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Entropic collapse transition of a polymer in a solvent with a nonadditive potential
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We use molecular dynamics simulations to study an entropy-driven collapse transition of a flexible polymer
in a solvent. Monomers and solvent particles interact with a steeply repulsive soft-sphere potential. We
consider a nonadditive potential system in which the effective diameter describing the solvent-monomer
interaction is greater than or equal to the diameters corresponding to the solvent-solvent and monomer-
monomer interactions, which are set equal. We examine the effects of nonadditivity of the solvent-monomer
potential and solvent density on the collapse transition. We find that a small degree of nonadditivity will drive
the transition at sufficiently high solvent density. Increasing the density leads to a collapse transition at lower
values of nonadditivity] S1063-651X99)06609-X]

PACS numbes): 61.25.Hq, 64.75tg

The collapse of a polymer in a solvent from a swollen coilhas proven to be more difficult. Recently, Escobedo and de
to a compact globule has been the subject of a huge body &fablo[5] simulated a 32-mer hard-sphere chain in a mono-
experimental, theoretical, and computer simulation researcimeric hard-sphere solvent, but did not observe a collapse
and constitutes an important model system with applicationgransition for solvent packing fractions up tp=0.48, just
ranging from the stability of polymers to dimixing in a sol- below the freezing transition of the solvent. Note that in the
vent to protein folding. Typically, simulation studies of poly- study of Dijkstraet al. [2,3], the polymer collapse was seen
mer chain collapse have employed isolated chain models ignly at a very high solvent packing fraction 0j=0.7
which the monomer interaction potential is composed of eithough results for packing fractions between 0.3 and 0.7
ther hard- or soft-core repulsion as well as short-range attragyere not reported a value at which a hard-sphere solvent is
tion. The latter component is an effective potential whichin 5 solid phase. Following this study, the same group re-
represents a contribution from the frue monomer-monomefqreq 4 successful observation of an entropic collapse tran-
potential as well asand especiallythe effect of the solvent  gjion for a similar athermal hard-sphere chain in a hard-
medium. While such simple models provide much inSightsphere solvent for longer chain lengths, and where the

into the polymer collapse proble_m, they _prowd(_a little or no solvent particle diameter, was set to five times that of the
understanding about how the microscopic details of the SOIFnonomer diameteis]. However, the physical picture of this
vent and its interaction with the polymer determine the sta- ' ' pny P

bility of the chain to collapse. Only by explicit inclusion of system is that of a polymer-colloid mixture, r_a_ther than a
the solvent molecules can this problem be addressed. standard polymer-solvent system. The transition was ob-

In 1992, Frenkel and Louis proposed that a purely hargServed at chain lengths for whidRy~og,. It remains an
core polymer could undergo an entropy-driven collapse tran®P€n question as to whether a hard-sphere chain in a hard-
sition in a hard-corgand therefore athermakolvent [1]. sphere solvent can undergo an entropy-driven collapse tran-
This was presented in the context of an exact result demorfition at accessible solvent densities when the solvent and
strating an entropic demixing transition of a hard-core binarynonomer diameters are about equal. If so, it will likely occur
mixture of particles using a simple lattice model. The poly-only when the chains are very long and at high densities.
mer collapse transition can be understood as arising from the In the present paper, we consider the effects of nonaddi-
competition between the conformational entropy of the chairiivity of the solvent-polymer potential in a system similar to
and the translational entropy of solvent, which favor swollenthose described in the studies cited above. It is well known
and collapsed chain states, respectively. Soon after thighat, at sufficiently high densities, a symmetric binary fluid
study, the phenomenon was observed in two Monte Carlenixture composed of hard spheres of equal diameter, but for
simulation studies of lattice chains, first by Dijkstehal.  which the effective diameter between spheres of different
[2,3], and later by Luna-Baenaset al. [4], who examined species is larger, undergoes demixing into two phases that
the role of solvent size and shape on the transition. In eachre each rich in one of the two species. It is possible that
study, the chain collapse was manifest in the sudden reduemploying a nonadditive solvent-monomer potential in the
tion of the radius of gyratiorR; upon an increase in the chain-solvent system could induce an analogous microphase
solvent density{2—4] or chain length[3]. The state of a separation, i.e., chain collapse. In fact, tfiatticel model
chain, or equivalently, the quality of the solvent, was detersystem discussed in the article by Frenkel and Lduis
mined by monitoring the scaling &, with chain lengthN,  which introduced the possibility of an entropy-driven col-
Ry~N”, wherev~0.58 for a good solvertswollen coi) and  lapse transition, employed an effectively nonadditive hard-
v=1/3 for a poor solventcollapsed chain core potential. We demonstrate that a continu@es, off-

The simulation of an entropy-driven polymer collapselattice) chain-solvent system with a nonadditive potential, in
transition for an off-lattice(i.e., continuous-spagesystem  which unlike speciesmonomer and solvepinteract with an
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FIG. 2. Mean-square radius of gyrati®y vs polymer lengttN

FIG. 1. Mean-square radius of gyratlaj vs nonadditivitys for at various densities and degrees of nonadditisity

a polymer of lengttN=40 at pressureB* =1.0, 2.5, 5.0, and 10.0,

which correspond to densities pff =0.28, 0.44, 0.60, and 0.76, . . . 5. .
respectively, for pure solvent. trend is very clear: there is a consistent decreadgjjiwith

increasings at all densities. As the solvent density increases,

effectively larger diameter than do like species, does indeethe decrease occurs more rapidly; that is, the chain collapse
undergo an entropy-driven transition to a collapsed chaiccurs more easilyi.e., at lower values of nonadditivitg)
state. with increasing solvent density. The curves are sigmoidal in

We employ isothermal-isobaricN¢P-T) molecular dy- shape and level off to a constant value at lasgd@his be-
namics simulations to study an isolated chain immersed in &avior is reminiscent of the sort of collapse transition seen in
solvent. Monomer-monomer and solvent-solvent interactionsnodel polymer systems when the temperature is varied. The
are described by a steeply repulsive potential,(r) controlling parameter that governs the transition in the
=Uug{r)=e€(o/r)", wheren=30. The monomer-solvent in- present cases, is analogous to inverse temperature.
teraction potential is given byu,(r)= €l o/(r—so)]", In order to show that the system undergoes a true collapse
wheres is the degree of nonadditivity of the potential. Al- transition, we determine the relationship betwégnand N
though the system is not rigorously athermal, the steeplyor different degrees of nonadditivity and solvent densities.
repulsive nature of the site-site potentials should make amhe results are plotted in Fig. 2 on a log-log scale $or
excellent approximation to the hard-particle limit. Finally, =0.0 and 0.2, angh* =0.28 and 0.60.
adjacent monomers on the chain were bonded with a har- In the scaling limit, we expect thaR,~N", where v

monic potentialu,o,= Ky (r — 0)/2, wherek,o?/ e=500. =1/3 for a collapsed chain, and 0.58 for a swollen chain. All
The simulations were carried out at a temperaturd®f four curves start aRy=0.5 for N=2, but the curve fors
=kgT/e=2.0, and at pressures &#*=Pg%e=1.0, 2.5, =0.2 andp* =0.60 quickly diverges from the other three.

5.0, and 10.0, which correspond to solvent densitiep*of  After N~ 15, the curve becomes linear, and a fit to the last
=N¢o®/V=0.28, 0.44, 0.60, and 0.76, respectively, in thefive points yields a scaling exponent pf=0.32+0.01, im-
case of pure solvent. The simulations used a range of chaiplying that the chain is in a collapsed state. This is consistent
lengths up toN=50 monomers ap*=0.28 andN=40 at  with the results of Fig. 1. The other curve 0.2 at the
higher solvent densities, and with up ky=1678 solvent |ower densityp* =0.28 scales more rapidly with: a fit to
particles, though fewer solvent particles were used withthe last four points gives=0.53+0.2, somewhat less than
shorter chains. The number of solvent particles was chosehe value expected in the good solvent case. This is also
for a particular density so that the radius of gyration was naconsistent with the results of Fig. 1, which shows this state to
greater than a quarter of the simulation box length, in ordebe intermediate between the swollen and collapsed state. The
to avoid artificial monomer-monomer interactions caused bytwo curves at both densities for chains with additive poten-
the chain wrapping around the periodic boundaries. tials (s=0) also scale withN in a manner close to the good
The principal quantity that we monitor is the root-mean-solvent prediction: a fit to the last four points of the data
square radius of gyratioRy as a function of chain lengtN,  yields scaling exponents af=0.62+0.2 for p* =0.28, and
solvent densityp*, and nonadditivitys. In order to obtain  »=0.61+0.03 forp* =0.60. The fact that the scaling expo-
statistically meaningful estimates of this quantity, the systenhents are slightly larger than the good solvent prediction of
was run for times much longer than the time scale of the,=0.58 is likely due to the fact thall is very close to,
fluctuations inRy, which increases rapidly with increasing though not yet in, the scaling regime.
chain length and solvent density. Typically, we equilibrated In order to gain further insight into the behavior of this
the system forAt* =(e/mo?)4=2000 and sampled the system, we analyze the simulation data using a theory devel-
data forAt*=10000, thoughAt* =20000 was sometimes oped by Edwards and Muthukumar which predicts the con-
used for the longer chains. With a time step&f =0.005, formational behavior of a Gaussian chain in a random ather-
this corresponds to (2-4)1C° time steps. mal medium of quenched obstaclgd. It has been argued
Figure 1 showsRé as a function of nonadditivitys at  that for sufficiently large systems the statistical behavior of
various solvent densities for chains of lendth=40. The this system should be identical to that of a chain in a medium
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10 ¢ T ] We find C=0.83 from the fit to the data fes=0.2, and
[ Os=0, p'=0.28 C=9.4 fors=0. The latter is likely to be a poor estimate of
Os=0, p'=060 | C due to the lack of data in the largelimit, but the basic
520, p'=0.76 result is clear:.C is significantly smaller in the nonadditive
@s=02, p'=028 case since the pseudopotentialdescribing the solvent-
Ws=02, p'=0.60 monomer interaction is larger when the excluded volume of
] e ] the two species is larger. Note that the data for the additive

QOO
D-n.,_ potential systems fall along the flat part of the curve, indi-

cating that they lie in the good solvent regime, consistent
with the interpretation of the results of Figs. 1 and 2. By
contrast, the data fa=0 andp* =0.60 lie in the asymptotic
_ regime of{~z" ! asz—, the poor solvent scaling predic-

i B "10 tion, also consistent with the interpretation of the results in
1 Figs. 1 and 2. Further, we note that the data for the nonad-
ha ditive, low-density systemg=0.2, p* =0.2) lie in the tran-

FIG. 3. Comparison of simulation results for the scaled meanSition regime between the two limits, also consistent with the
square radius of gyratiod= RS/RSVO, vs 7N%5 and the predictions intermediate scaling behavior of=0.53 discussed above.
of the theory of Edwards and Muthukumar for a polymer chainBased on the theory, we expect that the scaling exponent

immersed in a medium of quenched obstacR%, is the mean-  should approach the poor solvent limit for sufficiently large
square radius of gyration for an isolated chain, apd(7/6)p* chains.

=(m/6)No/V is the packing fraction of the solvent. The solid and In summary, we have studied a polymer in a monomeric

dashed lines are _the fits to the data using(E_E)qfor the nonadditive ¢, vent interacting with a steeply repulsive interaction, and

(s=0.2) and additive $=0) cases, respectively. demonstrated that the chain undergoes an entropy-driven col-
lapse transition when a small degree of nonadditivity is in-

corporated into the monomer-solvent interaction. The degree
of nonadditivity required to induce chain collapse decreases
when the density of the solvent increases. This is an entropy-
(= RE/RS’OZ z 1-exp—2)], (1)  driven collapse transition observed in continuous space for a

system where the solvent particles are not significantly big-
whereRé‘0 is the mean-square radius of gyration for an iso-ger than the monomers.
lated chain,z=N7?/C, where 7 is the packing fraction of . , .
the solvent andC is a constant proportional to~ 2, whereu | would like to thank Martin Zuckermann and Chris Ro-
is a pseudopotential related to the polymer-solvent excludef®rick for stimulating discussions and Martin Zuckermann
volume interaction. Figure 3 shows two fits of the simulationfor @ critical reading of the manuscript. The financial support

of annealed obstacld$8,9], and, therefore, that the theory
should also be applicable to a chain-solvent syst@mThe
theory predicts the following scaling &i:

additive (s=0) and nonadditiveg=0.2) cases. Council of Canada is gratefully acknowledged.
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